一阶常微分方程初值问题,一般表示如下所示:

欧拉法,改进的欧拉法,龙格-库塔法都是基于同样的原理,即用切线去逼近原方程的曲线1

Euler_Method

那么怎么作出切线呢,就是这个切线的方程。

欧拉法计算时,令每次前进的步长为,每次根据步长h根据切线的方向求下一个的位置。

改进的欧拉法,就是在欧拉法的基础上修改方向(斜率),是得每步计算的切线更贴近原曲线。

如果设法在内多预报几个点的斜率值,然后将它们加权平均作为平均斜率,则有可能构造出更高精度的计算格式,龙格-库塔法就是在上述改进欧拉法的基础上,继续构造新的,来达到更加精确的逼近原曲线的目的。

一般常用的方法是四阶龙格-库塔法,计算公式如下:

四阶龙格-库塔法程序如下所示。

#include"stdio.h"
#include"stdlib.h"
void fun1(double a,double b,double h)
{  double x,y=0,i,k1,k2,k3,k4;
   for(i=1;i<=((b-a)/h)+1;i++)
 { x=i*h;
   k1=h*(1-y);
   k2=h*(1-(y+1/2.0*k1));
   k3=h*(1-(y+1/2.0*k2));
   k4=h*(1-(y+k3));
   y=y+1/6.0*(k1+2*k2+2*k3+k4);
 }  
 printf("%lf\n",y);
      }
      
void fun2(double a,double b,double h)
{  double x,y=1,i,k1,k2,k3,k4;   
   for(i=0;i<=((b-a)/h);i++)
 { x=i*h;
   k1=h*(x*y*y);
   k2=h*((x+h/2)*(y+1/2.0*k1)*(y+1/2.0*k1));
   k3=h*((x+h/2)*(y+1/2.0*k2)*(y+1/2.0*k2));
   k4=h*((x+h)*(y+k3)*(y+k3));
   y=y+1/6.0*(k1+2*k2+2*k3+k4);
 }  
 printf("%lf\n",y);
      }

int main()
{double a=0,b=1,h=0.1;
      fun1(a,b,h);
      fun2(a,b,h);
      }

1. 雅克比(Jacobi)迭代法求方程组的根

雅克比迭代法非常简单,对于一个给定的n×n方程组

可以把 A分解成两个矩阵

方程组可以改写为 ,该公式即为迭代公式。

又可写成

注意这种解方程组的问题,矩阵都要满一定的收敛条件,在这里是迭代矩阵的谱半径小于1,

#include"math.h"
#include"stdio.h"
#include"stdlib.h"
void main()
{
	double x1,x2,x3,x11,x22,x33;
    int i=0;
    printf("No.0008雅克比迭代法求方程组的根\n\n输入初值:");
    scanf("%lf %lf %lf",&x1,&x2,&x3);
    while(fabs(x11-(1-x2-x3)/(-8.0))>0.001 && fabs(x22-(16-x1-x3)/(-5.0))>0.001 && fabs(x33-(7-x1-x2)/(-4.0))>0.001)
  {
	x11=(1-x2-x3)/(-8.0);//写迭代式 
	x22=(16-x1-x3)/(-5.0);//写迭代式
	x33=(7-x1-x2)/(-4.0);//写迭代式
	x1=x11;
	x2=x22;
	x3=x33;
    i++;
  }	
	printf("解为:\nx1=%lf\nx2=%lf \nx3=%lf\n迭代次数:%d\n",x1,x2,x3,i);
system("pause");
} 

2. 高斯-赛德尔(Gauss-Seidel)迭代法求方程组的根

高斯-赛德尔迭代法和雅克比迭代法的区别在于,将A分解为一个上三角矩阵和下三角矩阵的形式。

这样,代入迭代式后为:

系数矩阵 A 严格对角占优或对称正定时,高斯-赛德尔迭代法必收敛。

#include"math.h"
#include"stdio.h"
#include"stdlib.h"
main()
{
	double x1,x2,x3,x11,x22,x33;
    int i=0;
    printf("No.0009高斯赛德尔(Gauss-Seidel)迭代法求方程组的根\n\n输入初值:");
    scanf("%lf %lf %lf",&x1,&x2,&x3);
    while(fabs(x11-(1-x2-x3)/(-8.0))>0.01 && fabs(x22-(16-x1-x3)/(-5.0))>0.01 && fabs(x33-(7-x1-x2)/(-4.0))>0.01)
  {
	x11=x1;x22=x2;x33=x3;
	x1=(1-x2-x3)/(-8.0);//写迭代式 
	x2=(16-x1-x3)/(-5.0);//写迭代式
	x3=(7-x1-x2)/(-4.0);//写迭代式
    i++;
  }	
	printf("解为:\nx1=%lf\nx2=%lf \nx3=%lf\n迭代次数:%d\n",x1,x2,x3,i);
system("pause");
}

3. 牛顿迭代法求方程组的根

这个根牛顿迭代法求解方程的根一样。。。

其中 是雅克比矩阵。

#include"math.h"
#include"stdio.h"
#include"stdlib.h"
main()
{
	double x1,x2,x11,x22;
    int i=0;
    printf("No.0010牛顿迭代法求方程组的根\n\n输入初值:");
    scanf("%lf %lf",&x1,&x2);
	x11=x1-(2*x2/(2*x2-8*x1)*(x1+2*x2-3)-2/(2*x2-8*x1)*(2*x1*x1+x2*x2-5));//写迭代式 
	x22=x2-(-4*x1/(2*x2-8*x1)*(x1+2*x2-3)+1/(2*x2-8*x1)*(2*x1*x1+x2*x2-5));
    i++;//写迭代式
 while(fabs(x11-x1)>0.001 && fabs(x22-x2)>0.001)
  { x1=x11;
	x2=x22;
	x11=x1-(2*x2/(2*x2-8*x1)*(x1+2*x2-3)-2/(2*x2-8*x1)*(2*x1*x1+x2*x2-5));//写迭代式 
	x22=x2-(-4*x1/(2*x2-8*x1)*(x1+2*x2-3)+1/(2*x2-8*x1)*(2*x1*x1+x2*x2-5));//写迭代式
    i++;
  }	
	printf("解为:\nx1=%lf\nx2=%lf \n迭代次数:%d\n",x11,x22,i);
system("pause");
} 

1. 二分法求方程的根

二分法可行的条件是有介值定理支持。

介值定理说明在实数范围内,区间上可以画出一个连续曲线。 存在,那么存在, ,使得

二分法就是异号时,介值定理的特殊情况,即存在实数使得存在。

#include"math.h"
#include"stdio.h"
#include"stdlib.h"
double fun(double k)
{return 1-k-sin(k);//所求方程 
}
void main()
{double a,b,x;int i=0;
printf("No.0004二分法求方程的根\n\n输入区间左端点:");
scanf("%lf",&a);
printf("输入区间右端点:"); 
scanf("%lf",&b);
x=(a+b)/2.0;
while(/*fabs(fun(x))>0.00005||*/fabs(a-b)>0.00005)//近似范围 
{
if(fun(a)*fun(x)<0) b=x;
if(fun(b)*fun(x)<0) a=x;
x=(a+b)/2.0;
i++;}
printf("方程的根:%lf\n",x);
printf("迭代次数:%d\n\n",i);
system("pause");
}

2. 迭代法求方程的根

迭代法主要是将这种等式,该写成,然后给定一个初始的,根据公式,求出,接下来,比较的差值大小,如果差值等于0或者一个非常非常小的数,那么则求出最终的即为;如果差值还很大,则进行迭代步骤,将带入到公式右侧,求出左侧的,重复上述比较步骤,直到收敛于一个定值。

#include"math.h"
#include"stdio.h"
#include"stdlib.h"
double fun(double k)
{
	return pow(1+k*k,1/3.0);//所求方程 
}
void main()
{double a,b,x,x1,l=1;
int i=0,p;
printf("No.0005迭代法方程的根\n\n选择输入数据种类:\n1.数值\n2.区间\n");
printf("\n");
while(l==1)
{scanf("%d",&p);
if(p!=1&&p!=2) printf("请输入指定序号\n\n");//判断输入的序号是否正确 
else l=0;
}
switch(p)
 {
 case 1:
		printf("数据种类\n1.数值\n输入数值:");
		scanf("%lf",&x);
		x1=fun(x);i=i+1;
		break;
 case 2:printf("数据种类\n2.区间\n");
		printf("输入区间左端点:");
		scanf("%lf",&x);
		printf("输入区间右端点:");
		scanf("%lf",&x1);x1=fun((x+x1)/2.);i=i+1;
		break;
 }
while(fabs(x-x1)>0.00005)
{
x=fun(x1);
i=i+1;
x1=fun(x);
i=i+1;
}
printf("方程的根:%lf\n",x1); 
printf("迭代次数:%d\n\n",i);
system("pause");
}

3.牛顿迭代法

牛顿迭代法又称为牛顿-拉弗森方法(Newton-Raphson method),它比一般的迭代法有更高的收敛速度。

Newton-Raphson method

点的切线是的线性逼近。离点距离越近,这种逼近的效果也就越好,也就是说,切线与曲线之间的误差越小。所以我们可以说在点附近,

牛顿-拉弗森方法提出来的思路就是利用切线是曲线的线性逼近这个思想,随便找一个曲线上的点(为什么随便找,根据切线是切点附近的曲线的近似,应该在根点附近找,但是很显然我们现在还不知道根点在哪里),做一个切线,切线的根(就是和x轴的交点)与曲线的根,还有一定的距离。我们从这个切线的根出发,做一根垂线,和曲线相交于点,继续重复刚才的工作,多次迭代后会越来越接近曲线的根,即迭代收敛。

在计算时,首先选择一个,然后计算相应的和切线斜率,接下来计算穿过点(,)并且斜率为的直线和轴的交点的坐标,公式为: , 将其转化为的形式,即有:

将初始的代入到上述公式中,经过多次迭代,可以求得最后的根。

#include"math.h"
#include"stdio.h"
#include"stdlib.h"
double fun(double k)
{
	return k*k*k-k*k-1;//所求方程 
}
double fun1(double k)
{  
	return 3*k*k-2*k;//所求方程的一阶导函数 
}
void main()
{double a,b,x,x1,l=1;
int i=0,p;
printf("No.0006牛顿迭代法求方程的根\n\n选择输入数据种类:\n1.数值\n2.区间\n");
printf("\n");
while(l==1)
{scanf("%d",&p);
if(p!=1&&p!=2) printf("请输入指定序号\n\n");//判断输入的序号是否正确 
else l=0;
}
switch(p)
{
 case 1:
		printf("数据种类\n1.数值\n输入数值:");
		scanf("%lf",&x1);
		break;
 case 2:printf("数据种类\n2.区间\n");
		printf("输入区间左端点:");
		scanf("%lf",&x);
		printf("输入区间右端点:");
		scanf("%lf",&x1);x1=(x+x1)/2.;
		break;
 }
while(fabs(fun(x1)/fun1(x1))>0.00005)
{
x=x1-fun(x1)/fun1(x1);
x1=x;
i++;
}
printf("方程的根:%lf\n",x1); 
printf("迭代次数:%d\n\n",i);
system("pause");
}

4. 弦割法

弦割法(Secant Method)是基于牛顿法的一种改进,基本思想是用弦的斜率近似代替目标函数的切线斜率,并用割线与横轴交点的横坐标作为方程式的根的近似。

SecantMethod

公式就不推了,参见维基百科或者百度百科。

#include"math.h"
#include"stdio.h"
#include"stdlib.h"
double fun(double k)
{
	return k*k*k-k*k-1;//所求方程 
}
main()
{double a,b,x,x1,l=1,x0,x2;
int i=0,p;
printf("No.0007弦割法求方程的根\n\n选择输入种类:\n1.单点\n2.双点\n");
printf("\n");
while(l==1)
{scanf("%d",&p);
if(p!=1&&p!=2) printf("请输入指定序号\n\n");//判断输入的序号是否正确 
else l=0;
}
switch(p)
{
 case 1:
		printf("种类\n1.单点\n");
		printf("输入点1:");
		scanf("%lf",&x);
		printf("输入点2:");
		scanf("%lf",&x1);
        while(fabs(fun(x1)*(x1-x)/(fun(x1)-fun(x)))>0.00005)
        {
        x2=x1-fun(x1)*(x1-x)/(fun(x1)-fun(x));
        x1=x2;
        i++;
        }
        printf("方程的根:%lf\n",x1); 
        printf("迭代次数:%d\n\n",i);
		break;
 case 2:printf("种类\n2.双点\n");
		printf("输入点1:");
		scanf("%lf",&x);
		printf("输入点2:");
		scanf("%lf",&x1);
        while(fabs(fun(x1)*(x1-x)/(fun(x1)-fun(x)))>0.00005)
        {
        x2=x1-fun(x1)*(x1-x)/(fun(x1)-fun(x));
        x=x1;
        x1=x2;
        i++;
        }
        printf("方程的根:%lf\n",x1); 
        printf("迭代次数:%d\n\n",i);
	    break;
}
system("pause");


开始介绍本科时期学习的计算方法的内容,即求积分,求方程的根(普通的x元x次方程,方程组),所涉及到的基本步骤都是迭代循环之类的。

这个部分的程序都是C语言(极少部份C++语法)写的,system('pause')在linux下不管用。不知道为什么那时候写程序{都会换行,现在看起来好不习惯。

1.牛顿-柯特斯公式 (Newton–Cotes formulas)

后面要介绍的复化辛普森法和复化梯形法都是牛顿-柯特斯公式的特殊形式,所以先介绍一下牛顿-柯特斯公式的形式:

1.1.左边为啥能约等于右边呢?

这是根据拉格朗日插值法进行的推导计算。对于拉格朗日插值法的直观理解推荐看知乎马同学的回答

拉格朗日插值法构造了穿过已知的一组点的曲线的函数表达式。

那么对于一个定积分问题,我们可以简化成求解穿过a与b两个点的曲线与X轴的面积。

Trapezoidal_rule_illustration

这条曲线,可以根据a与b,采用拉格朗日插值法近似表示为 ,其中

带入求解定积分(这部分的具体推导可以翻墙看The Math Guy的视频)。

最后结果等于 ,将 看作 ,假设我们已知a,b以及a,b之间一系列的点,最终可以根据拉格朗日插值法得到牛顿-柯特斯公式。

上面简化成a与b两点的例子的结果就是梯形公式 简化成a,,b的三点的结果,就是辛普森公式

1.2.那么复化(composite)是什么意思呢 1

应用高阶牛顿-科特斯公式计算积分时,会出现数值不稳定的情况([龙格现象(Runge’s phenomenon)](https://en.wikipedia.org/wiki/Runge’s_phenomenon)),而低阶公式往往因为积分步长过大使得离散误差变大,因此,为了提高求积公式的精度,可以把积分区间分成若干个子区间,在每个子区间上使用低阶求积公式,然后将结果加起来,这种方法称为复化求积法

将区间[a,b]划分为n等分,步长为,节点为,在每个子区间使用梯形公式得:

, 其中

根据复化梯形公式的推导,同理可得复化辛普森公式为:

, 其中

上面这个公式对于n的取值有一些条件,辛普森法则是根据三个点的位置来推定曲线的函数表达形式,这时需要要求整个区间被分割成偶数份2,即n是偶数,公式可以写成

2.复化辛普森求积分

终于到了程序的部分,求 从a到b的积分。

#include<math.h>
#include<stdio.h>
#include<stdlib.h>
void main()
{   int n;//定义节点数 
    double a,b;//定义左右节点 
    printf("No.0001复化辛普森求积分(Simpson)\n\n输入节点数:");
    scanf("%d",&n);
    n=n-1; //计算几等分数 
    printf("输入左端点:"); 
    scanf("%lf",&a); 
    printf("输入右端点:");
    scanf("%lf",&b); 
   	double pi=3.1415927;
	n=n-1; //计算几等分数 
	double	h=(b-a)/(2*n);//计算步长
	int i,j;
	double x[2*n],y[2*n],t1=0,t2=0,t;
	x[0]=a; 
    x[2*n]=b;
	y[0]=1;//需要手动修改在左端点的值 
	y[2*n]=sin(pi/2)/(pi/2);//需要手动修改在右端点的值
	for(i=1;i<=2*n-1;i++) 
    {
        if(i*h<=b)x[i]=x[0]+i*h;
        }
	for(j=1;j<=2*n-1;j++)
	{
		y[j]=sin(x[j])/x[j];//需要手动修改
     	}
	for(i=1;i<=n;i++)
	{
        t1=t1+4*y[2*i-1];
        }
	for(i=1;i<=n-1;i++)
	{
	t2=t2+2*y[2*i];
    	}
	t=h/3*(y[0]+y[2*n]+t1+t2);//求积分 
	printf("\n步长h:%.7lf\n\n积分值t:%.7lf\n\n",h,t);
	printf("输出相对应的xy值:\n");
    for(i=0;i<=2*n;i++)
	printf("y=%.7lf---x=%.7lf\n",y[i],x[i]);
   	system("pause");
}

3.复化梯形求积分

接上,仍就求 从a到b的积分。


#include<math.h>
#include<stdio.h>
#include<stdlib.h>
void main()
{   int n;//定义节点数 
    double a,b;//定义左右节点 
    printf("No.0002复化梯形求积分\n\n输入节点数:");
    scanf("%d",&n);
    n=n-1; //计算几等分数 
    printf("输入左端点:"); 
    scanf("%lf",&a); 
    printf("输入右端点:");
    scanf("%lf",&b); 
   	double pi=3.1415927;
	
	double	h=(b-a)/n;//计算步长
	int i,j;
	double x[n+1],y[n+1],t1=0,t;
	x[0]=a; 
    x[n]=b;
	y[0]=1;//需要手动修改在左端点的值 
	y[n]=sin(pi/2)/(pi/2);//需要手动修改在右端点的值
	for(i=1;i<=n-1;i++) 
    {
        if(i*h<=b)x[i]=x[0]+i*h;
        }
	for(j=1;j<=n-1;j++)
	{
		y[j]=sin(x[j])/x[j];//需要手动修改
     	}
	for(i=1;i<=n-1;i++)
	{
        t1=t1+y[i];
        }
	t=h*(0.5*y[0]+0.5*y[n]+t1);//求积分 
	printf("\n步长h:%.7lf\n\n积分值t:%.7lf\n\n",h,t);
	printf("输出相对应的xy值:\n");
    for(i=0;i<=n;i++)
	printf("y=%.7lf---x=%.7lf\n",y[i],x[i]);
   	system("pause");
}

其实上面的程序写得都很烂,没有参考文献中的这个好。


#include<stdio.h>
#include<math.h>
double Function(double x)//所要计算积分的函数f(x)
{
    if(x==0)//sin(x)/x在0处的取值为1
        return 1;
    else
        return sin(x)/x;
}
//复化梯形公式
double Trapz(double a,double b,int n)
{
    double h=(b-a)/n;
    double T=0;
    for(int i=1;i<n;i++)
    {
        T=T+Function(a+i*h);
    }
    T*=2;
    T=(Function(a)+Function(b)+T)*h/2;
    return T;
}
//复化辛普森公式
double MulripleSimpson(double a,double b,int n)
{
    double h=(b-a)/n;
    double T=0;
    for(int i=0;i<n;i++)
    {
        T=T+Function(a+i*h)+4*Function(a+(i+0.5)*h)+Function(a+(i+1)*h);
    }
    T=T*h/6;
    return T;
}
void main()
{
    printf("使用复化梯形公式可得:%f\n",Trapz(0,1,8));
    printf("使用复化辛普森公式可得:%f\n",MulripleSimpson(0,1,4));
}

当年为了做这个作业,我的还搞了个整合代码(网上找了的程序,修改了一下),还包含了中矩形公式。

//数值分析--数值积分公式 
#include"iostream.h"
#include"math.h"
double c[10][10];
double f(double x)
{
  double sum=0;
  if(x==0) return 1;
  sum=sin(x)/x;//计算公式 
  return sum;
}
void initcotes(double c[][10])
{
  c[1][0]=c[1][1]=0.5;
  c[2][0]=c[2][2]=1.0/6.0;c[2][1]=2.0/3.0;
  c[3][0]=c[3][3]=1.0/8.0;c[3][1]=c[3][2]=3.0/8.0;
  c[4][0]=c[4][4]=7.0/90.0;c[4][1]=c[4][3]=16.0/45.0;c[4][2]=2.0/15.0;
  c[5][0]=c[4][5]=19.0/288.0;c[5][1]=c[5][4]=25.0/96.0;c[5][2]=c[5][3]=25.0/144.0;
}
int Trapezoid(double a,double b)
{
  cout<<"梯形公式的结果:"<<(b-a)*(f(a)+f(b))/2<<endl;
  return 1;
}
int MidRect(double a,double b)
{
  cout<<"中矩形公式的结果:"<<(b-a)*f((b+a)/2)<<endl;
  return 1;
}
int NewtonCotes(double a,double b)
{ 
  int n,k;double h;
  cout<<"请输入n的值(n值最多到5):";
  cin>>n;
  if(n>=6)
  cout<<"注意n值最多到5"<<endl;
  else{ 
  h=(b-a)/double(n);
  double sum=0;
  for(k=0;k<=n;k++)
   sum+=c[n][k]*f(a+k*h);
  cout<<"牛顿-柯特斯公式的结果:"<<(b-a)*sum<<endl;}
  return 1;
}
int STrapezoid(double a,double b)
{ 
  int n,k,q;double h;
  cout<<"1--复化梯形公式"<<endl;
  cout<<"2--复化辛普森求积公式"<<endl;
  cout<<"输入你想进行的操作:";
  cin>>q;  
  cout<<"请输入n的值:";
  cin>>n;
  h=(b-a)/double(n);
  double sum=0;
  sum+=(f(a)+f(b));
  for(k=1;k<=n-1;k++)  sum+=2*f(a+k*h);
 if(q==1)
 {
  cout<<"复化梯形公式的结果:"<<(h/2)*sum<<endl;
  return 1;
 }
  for(k=0;k<n;k++)
   sum+=4*f(a+(k+0.5)*h);
  cout<<"复化辛普森求积公式的结果:"<<(h/6)*sum<<endl;
  return 1;
}
void main()
{ cout<<"No.0003数值分析--数值积分公式"<<endl;
  double a,b;
  int p;
  cout<<"请输入积分的下限:";
  cin>>a;
  cout<<"请输入积分的上限:";
  cin>>b;
  initcotes(c);
  while(1)
  {
    cout<<"0--退出"<<endl;
 cout<<"1--梯形公式"<<endl;
 cout<<"2--中矩形公式"<<endl; 
 cout<<"3--牛顿柯特斯公式:"<<endl; 
 cout<<"4--复化公式"<<endl;
 cout<<"输入你想进行的操作:";
 cin>>p;
 switch(p)
 {
 case 1:Trapezoid(a,b);break;
 case 2:MidRect(a,b);break;
 case 3:NewtonCotes(a,b);break;
 case 4:STrapezoid(a,b);break;
 }
 if(p==0)  break;
  }
}

参考资料


昨天没写完,今天补上后半部分。现在回想起来计算机图形学是我本科时期上的最有意思的一门课程,其他解方程如果没有联系到实际问题,实在是太枯燥了。为啥我们的本科数学教科书不能改改,从更加应用的方向讲起呢。

扫描线算法

扫描线算法(Scanline rendering, Scanline alghorithm)主要用途是填充在屏幕上显示的几何图形。这个方法就是一个点一个点、一条线一条线,像扫描一样,把一个多边形的内部填满。 要想填充多边形内部的所有像素,需要找到一种合适的规则,能够沿着一个方向,一个像素不漏地把多边形内部填满,同时不污染多边形外部。于是上世纪六十年代,人们发明了一条水平方向的扫描线,它从开始,判断与多边形的交点,这些交点把扫描线分成了若干段,之后判断哪些“段”在多边形内部,哪些“段”在多边形外部,然后把内部的部分着色,完成后,令,即扫描线上移一格,重复之前的操作,直到扫描线不再与多边形的任何部分相交。

ScanLine

我的这个程序里用Bresenham’s line 的方法画多边形的边,然后用扫描线算法判断哪些像素是在多边形内部。

function scanline(x,y)
%测试数据:
% x=[10 50 30]./2;y=[30 20 70]./2;
% x=[10 30 50 20]./2;y=[20 10 50 70]./2;
% x=[20 50 110 110 50 20]./5;y=[20 10 30 80 50 70]./5;
% x=[20 25 210 110 80 20 50]./5;y=[20 5 60 80 50 70 35]./5;
% x=[20 25 100 210 110 80 20 50]./5;y=[20 5 40 30 80 50 70 35]./5; 

n=length(x);
kk=1;
A=[0,0];
x=[x,x(1)];
y=[y,y(1)];
for i=1:n
[a,k]=Bresenhamline(x(i),y(i),x(i+1),y(i+1));%画边
kk=kk+k;
A=[A;a];
end
A=A(2:kk,:);
m=kk-1;

y0=min(A(:,2));
y1=max(A(:,2));

yy=y0;
datayy=[inf inf];
while yy<y1
    k=0;
    for i=1:m
        if A(i,2)==yy
            k=k+1;
            D(yy,k)=A(i,1);         
        end
    end
    d0=min(D(yy,1:k));
    d1=max(D(yy,1:k));
    for j=d0:d1-1
%          pause(0.001);
%         plot(j,yy,'ro');
        datayy=[datayy;j yy];
    end   
    yy=yy+1;
end


x0=min(A(:,1));
x1=max(A(:,1));

xx=x0;
dataxx=[inf inf];
while xx<x1
    k=0;
    for i=1:m
        if A(i,1)==xx
            k=k+1;
            D(xx,k)=A(i,2);         
        end
    end

    d0=min(D(xx,1:k));
    d1=max(D(xx,1:k));
    for j=d0:d1-1
%          pause(0.001);
%         plot(xx,j,'ro');
        dataxx=[dataxx;xx j];
    end    
    xx=xx+1;
end

if size(dataxx(:,1))>size(dataxx(:,1))
    for i=2:size(dataxx(:,1))
        for j=2:size(datayy(:,1))
            if dataxx(i,1)==datayy(j,1) && dataxx(i,2)==datayy(j,2)
                plot(dataxx(i,1),dataxx(i,2),'ro');
                 pause(0.001);
            end
        end
    end
else
    for i=2:size(datayy(:,1))
        for j=2:size(dataxx(:,1))
            if datayy(i,1)==dataxx(j,1) && datayy(i,2)==dataxx(j,2)
                plot(datayy(i,1),datayy(i,2),'ro');
                 pause(0.001);
            end
        end
    end
end

end

其他图形变换

最终我为了展示自己所有的画图方法,搞了个大demo程序,把所有画线和几何图形的变换都囊括在一张图里。程序里可能还有些bug。 这其中包括:旋转变化,平移变换,比例变换,对称变换(关于x轴),错切变换,相对(2,2)点的旋转变换。

错切变换(transvection)是啥?就是把矩形变成平行四边形的变换。

demo

function demo
    figure
    subplot(4,2,1)   
    [Dx Dy]=DDALine(4,6,8,10)%DDALine(x(1),y(1),x(2),y(2))
    [X2]=Bresenhamline(1,2,6,7)%Bresenhamline(x(1),y(1),x(2),y(2))
    Bx=X2(:,1);
    By=X2(:,2);  
%----------------------------------------------    
    %二维几何变换
    s=45;
    T=[cos(s) sin(s) 0;
       -sin(s) cos(s) 0;
       0 0 1];
    title('旋转变换(逆时针)');
    xlabel('x');
    ylabel('y'); 
   for i=1:size(Dx(:))
       z=[double(Dx(i)) double(Dy(i)) 1];
       z=z*T;
       XX(i)=z(1);
       YY(i)=z(2);
       plot(XX,YY,'*- k')
   end
   for i=1:size(Bx(:))
       z=[double(Bx(i)) double(By(i)) 1];
       z=z*T;
       XXX(i)=z(1);
       YYX(i)=z(2);
       plot(XXX,YYX,'*- y')
   end
%----------------------------------------------    
   subplot(4,2,2)
    T=[1 0 0;
       0 1 0;
       4 5 1];
   
   for i=1:size(Bx(:))
       z=[double(Bx(i)) double(By(i)) 1];
       z=z*T;
       XXX(i)=z(1);
       YYX(i)=z(2);
        plot(XXX,YYX,'*- g')
        title('平移变换');
        xlabel('x');
        ylabel('y'); 
   end
   hold on
   plot(Bx,By,'* b');
%----------------------------------------------
   subplot(4,2,3)
    T=[2 0 0;
       0 2 0;
       0 0 1];
   
   for i=1:size(Bx(:))
       z=[double(Bx(i)) double(By(i)) 1];
       z=z*T;
       XXX(i)=z(1);
       YYX(i)=z(2);
        plot(XXX,YYX,'*- g')
        title('比例变换');
        xlabel('x');
        ylabel('y'); 
   end
   hold on
   plot(Bx,By,'* b');
%----------------------------------------------
   subplot(4,2,4)
    T=[1 0 0;
       0 -1 0;
       0 0 1];
   
   for i=1:size(Bx(:))
       z=[double(Bx(i)) double(By(i)) 1];
       z=z*T;
       XXX(i)=z(1);
       YYX(i)=z(2);
        plot(XXX,YYX,'*- g')
        title('对称变换(关于x轴)');
        xlabel('x');
        ylabel('y'); 
   end
   hold on
   plot(Bx,By,'* b');
%----------------------------------------------
   subplot(4,2,5)
    T=[0 -1 0;
       -1 0 0;
       0 0 1];
   
   for i=1:size(Bx(:))
       z=[double(Bx(i)) double(By(i)) 1];
       z=z*T;
       XXX(i)=z(1);
       YYX(i)=z(2);
        plot(XXX,YYX,'*- g')
        title('对称变换(关于y=-x轴)');
        xlabel('x');
        ylabel('y'); 
   end
   hold on
   plot(Bx,By,'* b');
   %----------------------------------------------
   subplot(4,2,6)
    T=[1 -1 0;
       2 1 0;
       0 0 1];
   zx=[1 5 3 1];
   zy=[3 4 0 3];
   clear XXX
   clear YYX
   for i=1:size(zx(:))
       z=[double(zx(i)) double(zy(i)) 1];
       z=z*T;
       XXX(i)=z(1);
       YYX(i)=z(2);
        plot(XXX,YYX,'*- g')
        title('错切变换');
        xlabel('x');
        ylabel('y'); 
   end
   hold on
   plot(zx,zy,'*- b');
   %----------------------------------------------
   subplot(4,2,7)
    T1=[1 0 0;
       0 1 0;
       -2 -2 1];
   T=[cos(s) sin(s) 0;
       -sin(s) cos(s) 0;
       0 0 1];
   clear XXX
   clear YYX
   for i=1:size(Bx(:))
       z=[double(Bx(i)) double(By(i)) 1];
       z=z*T1*T*(-1*T1);
       XXX(i)=z(1);
       YYX(i)=z(2);
        plot(XXX,YYX,'*- g')
        title('相对(2,2)点的旋转变换');
        xlabel('x');
        ylabel('y'); 
   end
   hold on
   plot(Bx,By,'* b');

end